home *** CD-ROM | disk | FTP | other *** search
- à 1.3 Lïear First Order Differential Equations
- äèèFïd ê general solution
- â For ê lïear, first order differential equation
- y' + y = x,è
- ê ïtegratïg facër is
- σ(x) = e╣.è
- The ïtegral ç σx is xe╣ - x + C
- The general solution is
- y = eú╣[xe╣ - x + C] = x - xeú╣ + Ceú╣
- éS èèA first order differential equation is said ë be
- LINEAR if it can be written ï ê form
-
- 1) y» + p(x)y = q(x)
-
- See Section 1.1 for problems on lïearity ç differential
- equations.
-
- èèThis differential equation can always (ï êory) be
- solved by use ç an INTEGRATING FACTOR.èBy defïition, an
- ïtegratïg facër is a function that when it multiplies both
- sides ç a differential equation, it turns one side ïë an
- EXACT DERIVATIVE.
-
- Let σ(x) be such an ïtegratïg facër å multiply
- equation 1) by it ë yield
-
- σ(x)y» + σ(x)p(x)y = σ(x)q(x)
-
- The σ(x) we are goïg ë use makes ê left hå side ç this
- equation ê EXACT DERIVATIVEèç σ(x)yèi.e.
-
- [σ(x)y]» = σ(x)q(x)
-
- Integratïg both sides ç ê equation, usïg ê fact that
- ê left hå side is an exact derivative yields
- ░
- σ(x)y =è▒èσ(x)q(x) dxè+èC
- ▓
-
- Solvïg for y yields ê GENERAL SOLUTION ç ê lïear, first
- order differential equation
- èèè 1èíè░ è┐
- 2) y =è──── ▒è▒ σ(x)q(x) dxè+èCè▒
- èè σ(x) └è▓ è┘
-
- The INTEGRATING FACTOR for this differential equation is
-
- èèèèèèèèèèèèèèèè
- èèèè èèèè ùèp(x) dxèèèèèèèèèèèèèèèè
- èèèè σ(x) =èe
-
- In computïg ê ïtegration facër, do NOT ïclude a constant
- ç ïtegration.èOnly one is necessary å it is ïcluded ï
- general solution 2).
-
- èè Formula 2) works ï all cases which means that this
- type ç differential equation always has a êoretical
- solution.èThere is a ê practical limitation that êre
- are two ïtegrals ïvolved.èIf eiêr or both cannot be
- ïtegrated ë an elementary function, ên êre will be no
- useful solution.
-
- èè The GENERAL SOLUTION will be valid for all x as long as
- ê functions p(x) å q(x) are contïuous everywhere.èPoïts
- ç disconïtuity will, ï general, cause ê solutions ë be
- ïvalid.èIn particular, ê ïtervals ç validity ç this
- solution will correspond ë ê ïterval ç contïuity ç
- ê functions p(x) å q(x).
- 1 y» - y = 3eì╣
-
-
- A) 3 + Ce╣ B) 3e╣ + Ce╣
-
- C) 3eì╣ + Ce╣ D) 3eÄ╣ + Ce╣
- üèèèy» - y = 3eì╣
-
- èèè èèThis differential equation is already ï lïear form,
- so ê ïtegratïg facër is
- èèèèèèèèèèèè
- ù (-1) dxèèèèèèèèèèèè
- σ(x) =èe =èeú╣
-
- The second ïtegral becomes
- ░
- ▒èeú╣ 3eì╣ dx
- ▓
- ░
- ▒è3e╣ dx
- ▓
-
- This ïtegrates directly ë
-
- 3e╣ + C
-
- The general solution is
-
- èèè1
- y =è───è[ 3e╣ + C ]
- èè eú╣
-
- è=èe╣ [ 3e╣ + C ]
-
- y = 3eì╣ + Ce╣
- ÇèC
- 2 xy» + y = xÅ
-
-
- A) xÅ/4 + C/x B) xÅ/4 + C ln[x]
-
- C) xÅ/5 + C/x D) xÅ/5 + C ln[x]
- üèèèxy» + y = xÅ
-
- èèè èèThis differential equation is NOT ï lïear form, so
- divide through by ê coefficient ç y» which is x, leavïg
- ê lïear differential equation
- èè 1
- y» + ─ yè=èxÄ
- èè x
- so ê ïtegratïg facër is
- èèèèèèèèèèèè
- ù 1/x dx èèln[x]èèèèèèèèèèèèèèèèèèèèè
- σ(x) =èe =èeèèè =èx
-
- The second ïtegral becomes
- ░
- ▒èx xÄ dx
- ▓
- ░
- ▒èxÅ dx
- ▓
- This ïtegrates directly ë
-
- xÉ/5 + C
-
- The general solution is
- èèè1
- y =è───è[ xÉ/5 + C ]
- èèèx
-
- è=èxÅ/5 + C/x
- ÇèC
- 3 èèè 2èèèè╨Ä
- y»è+è─ yè=èe
- èèè x
-
-
- ╨ÄèèèèèèèèèèèèèèxÄ
- A) eè /3x║è+èC/x║èèèB)èè eè /3xì + Cxì
- üèèèèèèè 2èèèxÄ
- èèèèèèèèy» + ─ y = e
- èèèèèèèèèè x
- èèè èèThis differential equation is already ï lïear form,
- so ê ïtegratïg facër is
- èèèèèèèèèèèè
- ù 2/x dxèèèèè 2 ln xèèèèèèèèèèèèèèèèèèèè
- σ(x) =èe =èe
- èèè
- èèèè ln[xì]
- èè =èeèèèèè
-
- èè =èxì
-
- The second ïtegral becomes
- ░èèè╨Ä
- ▒èxì eèèdx
- ▓
- This ïtegral requires substitution
-
- u = xÄè du = 3xì dxèèdx = du/3xì
-
- ░èèèè du
- ▒èxì e╗ ───
- ▓èèèè3xì
- 1è░
- ─è▒èe╗ du
- 3è▓
- This ïtegrates directly ë
-
- e╗ / 3 + C
-
- Substitutïg back ë ê origïal variable yields
-
- Ў
- eè / 3 + C
-
- The general solution is
- èèè1è íè ╨Ä ┐
- y =è───è▒èeè/3è+èC ▒
- èèèxìè└èè ┘
-
- èèè╨Ä
- è=èeè / 3xìè+èC / xì
- ÇèA
- 4 èèè 1
- y»è+è─ yè= 3sï[x]
- èèè x
-
- A) 3cos[x] + 3sï[x]/x + C/x
- B) 3cos[x] - 3sï[x]/x + C/x
- C) -3cos[x] + 3sï[x]/x + C/x
- üèèèèèèè 1
- èèèèèèèèy» + ─ y = 3sï[x]
- èèèèèèèèèè x
- èèè èèThis differential equation is already ï lïear form,
- so ê ïtegratïg facër is
- èèèèèèèèèèèè
- ù dx / xèèèèè ln[x]èèèèèèèèèèèèèèèèèèèèè
- σ(x) =èe =èeèèè
-
- èè =èx
-
- The second ïtegral becomes
- ░
- ▒è3x sï[x]èdx
- ▓
- This ïtegral requires ïtegration by parts
-
- u = 3xèèdu = 3dxèè
-
- dv = sï[x] dxèèv = -cos[x]
- The ïtegral becomes
-
- èèèèèèèèèèè ░èèèè
- - 3x cos[x] +è▒è3cos[x] dx
- èèèèèèè ▓èèè
-
- This ïtegrates directly ë
-
- - 3x cos[x] + 3sï[x] + C
-
- The general solution is
- èèè1è íè èèè ┐
- y =è───è▒è- 3x cos[x] + 3sï[x] + C ▒
- èèèxè └èè èèè ┘
- èèè
- è=è- 3cos[x]è+ 3sï[x] / xè+èC / x
- ÇèC
- 5 y» + tan[x] yè=èsec[x]
-
- A) -sï[x] + C cos[x]
- B) sï[x] + C cos[x]
- C) cos[x] + C sï[x]
- D) -cos[x] + C sï[x]
- üèèèy» + tan[x] y = sec[x]
-
- èèThis differential equation is already ï lïear form,
- so ê ïtegratïg facër is
- èèèèèèèèèèèè
- ù tan[x] dxèèèèèèèèèèèè
- σ(x) =èe
- èèèèèèèèèèèè
- ù sï[x] dx / cos[x]èèèèèèèèèèèè
- èè =èeèèè
- This ïtegral requires substitution
-
- u = cos[x]è du = -sï[x] dxèè dx = - du / sï[x]
- èèèèèèèèèèèè
- ù - sï[x] du / {sï[x] u }èèèèèèèèèèèèè
- σ(x) =èe
- èèèèèèèèèèèèèè
- è- ù du / uèèèèèèèèèèèèèè
- èè =èe
-
- This ïtegrates directly ë
-
- è- ln[u]
- èè = e
-
- Substitutïg back ë ê origïal variable
-
- èln {cos[x]}úî
- èè = e
- èln {sec[x]}
- èè =èe
-
- èè = sec[x]
-
- The second ïtegral becomes
- ░
- ▒èsec[x] sec[x]èdx
- ▓
- èèèè░èèèè
- ▒èsecì[x] dx
- ▓èèè
-
- This ïtegrates directly ë
-
- tan[x] + C
-
- The general solution is
- èèèè1èèíè è ┐
- y =è──────è▒ètan[x] + C ▒
- èè sec[x]è└èè è ┘
- èèè
- è=è tan[x]/sec[x]è+èC / sec[x]
-
- è=è sï[x] + C cos[x]
- ÇèB
- 6 y» + 2xyè=è2x
-
- èèè╨ì èèè
- A) 2 + Ce
-
- èèè-╨ì èèè
- B) 1 + Ce
- üèèèy» + 2xy = 2x
-
- èèè èèThis differential equation is already ï lïear form,
- so ê ïtegratïg facër is
- èèèèèèèèèèèè
- ù 2x dxèèèèèèèèèèèè
- σ(x) =èe
- Ѝ
- èè =èeèèè
-
- The second ïtegral becomes
- ░èèè╨ì
- ▒è2x eèèdx
- ▓
- This requires substitution with
- u = xìè du = 2x dx
- èèèè░èèèè
- ▒èe╗ du
- ▓èèè
- This ïtegrates directly ë
-
- e╗ + C
- Substitutïg back ë ê origïal variable yields
- Ѝ
- eè + c
- The general solution is
- èèèèè╨ì íè ╨ì ┐
- y =è1 / eè ▒èeè + C ▒
- èèèèèè └èè ┘
- èèè èè -╨║
- è=è1 +èC e
- ÇèB
- äèèSolve ê ïitial value problem
- â For ê lïear, first order differential equation
- y' + y = xèèy(0) = 5
- ê ïtegratïg facër isèσ(x) = e╣.è
- The general solution isèy = x - xeú╣ + Ceú╣
- Substitutïg x = 0 ïë ê general solution yields
- 5 = C so ê ïitial value problem's solution
- isèèy = x - xeú╣ + 5eú╣
- éS èèA full discussion ç Initial Value Problems for FIRST
- ORDER DIFFERENTIAL EQUATIONS is ï Section 1.2.è
-
- èèBriefly, solvïg an Initial Value Problem is a two-step
- process.èFirst, fïd ê GENERAL SOLUTION ç ê differential
- equation.è Second, substitute ï ê ïitial value ïfor-
- mationèi.e.èx╠ for x å y╠ for y.èThis will produce an
- equation for C which provides ê value ç ê arbitrary
- constant ë put back ï ê general solution.
- 7 xy» + y =èxe╣
- y(1) = 5e
-
- A) e╣ + e╣/x + 5e/x
- B) e╣ - e╣/x + 5e/x
- C) eú╣ + eú╣/x + 5e/x
- D) eú╣ - eú╣/x + 5e/x
- üèèèxy» + y = xe╣, y(1) = 5e
-
- èè èèThis differential equation is not ï lïear form, so divide
- ê entire equation by ê coefficient ç y» i.e. by x ë yield
- èè 1
- y» + ─ yè=èe╣
- èè x
- The ïtegratïg facër is
- èèèèèèèèèèèè
- ùè1 / x dxèèèèèèèèèèèè
- σ(x) =èe
- ln[x]
- èè =èeèèè
- èè
- èè =èx
-
- The second ïtegral becomes
- ░èèè
- ▒èx e╣èdx
- ▓
- This requires ïtegration by parts with
- u = xèèèèdu = dx
- dv = e╣dxèèv = e╣
- èèèèèèèè░èèèè
- xe╣è-è▒èe╣ dx
- èèèè ▓èèè
- This ïtegrates directly ë
-
- xe╣ - e╣ + C
-
- The general solution is
- èè 1èíèèèèèèèè┐
- y =è─è▒èxe╣ - e╣è+ C ▒
- èè xè└èè èèèè ┘
- èèè èèè
- è=èe╣è-èe╣ / xè+èC / x
-
- As ê ïitial condition is y(1) = 5e, substitute x = 1 å
- èèèèy = 5e.
-
- 5e = eîè- eî/1 + C/1
-
- Solvïg yieldsè C = 5e
-
- Thus ê specific solution is
-
- y = e╣ - e╣/x + 5e/x
- ÇèB
- 8 y» - 2yè=è2eÅ╣
- y(0) = 4
-
- A) eÅ╣ + 3eì╣
- B) 2eÅ╣ + 2eì╣
- C) -eÅ╣ + 3eì╣
- D) 2eÅ╣ + 2
- üèèèy» - 2y = 2eÅ╣, y(0) = 4
-
- èèè èèThis differential equation is already ï lïear form,
- The ïtegratïg facër is
- èèèèèèèèèèèè
- ùè-2 dxèèèèèèèèèèèè
- σ(x) =èe
-
- èè =èeúì╣èèè
-
- The second ïtegral becomes
- ░èèè
- ▒è2eÅ╣ eúì╣èdx
- ▓
- èèèè░èèèè
- ▒ 2eì╣ dx
- èèèè▓èè
- This ïtegrates via substitution usïg
- u = 2xèè du = 2 dxèèdx = du/2
- ░
- ▒ 2 e╗èdu/2
- ▓
-
- ░
- │èe╗ du
- ▓
- This ïtegrates directly ë
-
- e╗ + C
-
- Substitutïg back ë ê origïal variable yields
-
- eì╣ + C
-
- The general solution
- èèè1
- y = ────è[èeì╣ + C ▒
- èèeúì╣èèèè èèè
- è=èeÅ╣è+èCeì╣
-
- As ê ïitial condition is y(0) = 4, substitute x = 0 å
- èèèèy = 4.
- 4 = eòè+èCeò
-
- Solvïg yieldsè C = 3
-
- Thus ê specific solution is
-
- y = eÅ╣ + 3eì╣
- ÇèA
- 9 y» + cot[x]yè=èxì
- y(π/2) = 3π
-
- A) -xìcot[x] + 2x + 2cot[x] + 2πcsc[x]
- B) xìcot[x] - 2x + 2cot[x] + 2πcsc[x]
- C) xìcot[x] + 2x - 2cot[x] + 2πcsc[x]
- D) xìcot[x] + 2x + 2cot[x] - 2πcsc[x]
- üèèèy» + cot[x]y = xì, y(π/2) = 3π
-
- èèThis differential equation is already ï lïear form,
- The ïtegratïg facër is
- èèèèèèèèèèèè
- ùècot[x] dxèèèèèèèèèèèè
- σ(x) =èe
-
- ù cos[x] dx / sï[x]èèèèèèèèèèèèè
- èè =èe
- This requires substitution with
- u = sï[x]è du = cos[x dx
- this yields
- èèèèèèèèèèèèè
- ùèdu / uèèèèèèèèèèèè
- èè =èe
-
- This ïtegrates directly ë
- ln{sï[x]}
- èè =èeèè
-
- èè =èsï[x]
- The second ïtegral becomes
- ░èèè
- ▒èsï[x] xì dx
- ▓
- This requires ïtegration by parts
- u = xì èèdu = 2x dx
- dv = sï[x]èv = -cos[x]
- èèèèèèèèèèèèè░èèèè
- =è- xì cos[x]è+ ▒ 2x cos[x] dx
- èèèèèèèèèèèèè▓èè
- This ïtegral also requires ïtegration by parts
- u = 2xèèèdu = 2 dx
- dv = cos[x]èv = sï[x]
- èèè ░
- =è- xì cos[x]è+ 2x sï[x] -è▒ 2 sï[x] dx
- èèè ▓
- This ïtegrates directly ë
-
- =è- xì cos[x]è+è2x sï[x]è+è2 cos[x]è+èC
-
- The general solution is
-
- èèè 1
- y = ──────è[ -xìcos[x] + 2xsï[x] + 2cos[x] + C ]
- èèsï[x]
- èèèè èèè
- è=è-xì cot[x] + 2x + 2cot[x] + Ccsc[x]
-
- As ê ïitial condition is y(π/2) = 3π, substitute x = π/2
- èèèèå y = 3π.
- 3π = -πì/4 cot[π/2] + 2(π/2) + 2 cot[π/2] + Ccsc[π/2]
-
- 3π = π + C
-
- Solvïg yieldsè C = 2π
-
- Thus ê specific solution is
-
- y = -xì cot[x] + 2x + 2cot[x] + 2π csc[x]
- ÇèA
-
-